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Abstract

Domain adaptation (DA) aims to transfer knowledge
from a fully labeled source to a scarcely labeled or to-
tally unlabeled target under domain shift. Recently, semi-
supervised learning-based (SSL) techniques that leverage
pseudo labeling have been increasingly used in DA. De-
spite the competitive performance, these pseudo labeling
methods rely heavily on the source domain to generate
pseudo labels for the target domain and therefore still suffer
considerably from source data bias. Moreover, class dis-
tribution bias in the target domain is also often ignored
in the pseudo label generation and thus leading to fur-
ther deterioration of performance. In this paper, we pro-
pose GeT that learns a non-bias target embedding distri-
bution with high quality pseudo labels. Specifically, we
formulate an online target generative classifier to induce
the target distribution into distinctive Gaussian compo-
nents weighted by their class priors to mitigate source data
bias and enhance target class discriminability. We fur-
ther propose a structure similarity regularization frame-
work to alleviate target class distribution bias and further
improve target class discriminability. Experimental results
show that our proposed GeT is effective and achieves con-
sistent improvements under various DA settings with and
without class distribution bias. Our code is available at:
https://lulusindazc.github.io/get project/.

1. Introduction
Despite the remarkable advances of deep learning in

the last decade [19, 58, 21, 27], the success of most deep
learning-based works is based on the assumption that the
data distributions of the train and test sets are similar, i.e.
no domain shift. However, it is difficult to ensure no do-
main shift in the data distributions for many practical real-
world scenarios. Consequently, many domain adaptation
(DA) works [11, 25, 54, 50] have been proposed to allevi-
ate the domain shift problem. Unsupervised DA (UDA) is
the most commonly studied DA setting, where the goal is to
transfer knowledge from the labeled source data to the unla-

Debiased & 
Discriminative Target 

Pseudo Labels 

Model

Our GeT

Prediction

Source Ground-truth

ℒ!

Prediction

ℒ"#

Source Image

Target Image

Figure 1. Our GeT is designed to generate source domain and
class distribution debiased and discriminative pseudo labels for the
target domain in various domain adaptation tasks.

beled target data with domain shift. Other more challenging
variants of UDA include partial-set DA (PDA) [5, 68, 12]
where the target label space is a subset of the source label
space, semi-supervised DA (SSDA) [55, 22, 33, 26] which
assumes partial target data are labeled, etc.

Most DA approaches are often either based on learning
domain-invariant feature representations or directly adopt-
ing SSL techniques for knowledge transfer. It is shown
in [3, 43, 44] that the target error is bounded by the source
error and the divergence between marginal distributions in
the source and target domains. Inspired by the theoret-
ical analysis, many works [38, 65, 56, 15, 61] propose
to learn domain-invariant feature representations using a
shared feature extractor to align the source and target do-
mains. Nonetheless, feature alignment-based methods usu-
ally suffer from the potential risk of damaging intrinsic
target data discrimination. On the other hand, some re-
cent works [9, 72, 51] investigate the application of SSL
techniques, e.g. MixMatch [4] in [51], Label Propaga-
tion [74] in [72], etc to strengthen discriminability on the
unlabeled target domain. Although SSL-based DA meth-
ods can achieve competitive performance, they often suffer
from source domain bias due to over reliance on the source
domain for pseudo label generation. A recent work [36]
proposes to deal with data bias using an auxiliary target
domain-oriented classifier (ATDOC) based on pseudo la-
beling. It is shown that the proposed SSL regularization can
work quite well in most DA scenarios.

In addition to source data bias, many DA approaches (in-
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cluding ATDOC) suffer significant performance drop due to
class distribution bias in the target domain. Several meth-
ods [66, 60, 23, 59] are proposed to alleviate class dis-
tribution bias with class-conditioned sampling [23], class-
balanced self-training [60], etc. However, as discussed
in [10, 73], these methods rely on domain-invariant rep-
resentation learning that can hurt intrinsic data discrimi-
nation in the target domain. Consequently, a naive adop-
tion of these methods on SSL-based DA can lead to unreli-
able pseudo labels that greatly degrade performance. Fur-
thermore, many existing DA methods are often designed to
be task-specific and may not be versatile enough to handle
complex variants of the DA problem, e.g. PDA and SSDA.

As illustrated in Fig. 1, we propose GeT to generate de-
biased and discriminative pseudo labels to train the network
on the DA tasks in this paper. Our GeT consists of an online
target generative classifier and a structure similarity regular-
ization. 1) Our online target generative classifier is a Gaus-
sian mixture model (GMM). The class priors (i.e. mixture
coefficients) and the means of the Gaussian components
are the target features class distribution and prototypes, re-
spectively. Intuitively, our generative classifier induces the
target feature distribution into distinctive Gaussian compo-
nents weighted by their respective class priors and thus al-
leviating source data bias and enhancing target class dis-
criminability. We introduce a memory bank that resembles
a replay buffer to efficiently store and update the class pri-
ors and feature prototypes for the classifier online in each
mini-batch. 2) Our structure similarity regularization alle-
viates target class distribution bias and further improves tar-
get class discriminability. To this end, we introduce an aux-
iliary distribution implicitly constrained with entropy max-
imization to encourage balanced and discriminative pseudo
labels. The final pseudo labels are obtained as a mixup of
the pseudo labels generated by the target oriented genera-
tive classifier and the auxiliary distribution. We jointly op-
timize the auxiliary distribution, the pseudo labels and the
network parameters in an iterative classification expectation
maximization scheme.

We summarize our contributions as follows: 1) An on-
line target oriented generative classifier is proposed to in-
duce the distribution of the target features into distinctive
Gaussian components weighted by the class priors to avoid
class distribution and source data biases while enhancing
class discriminability. 2) We introduce a structure simi-
larity regularization that leverages an auxiliary distribution
implicitly constrained with entropy maximization to avoid
the severely biased model predictions. 3) A classification
expectation maximization framework is designed to jointly
optimize the generative classifier with the structure similar-
ity regularization for pseudo labels generation and train the
network with the generated pseudo labels. 4) Competitive
results are achieved in various DA settings on several stan-

dard benchmark datasets.

2. Related Work
Domain Adaptation. Many recent deep DA works [15,
38, 65, 14] have been proposed based on domain-invariant
representation learning using a shared feature extractor.
Marginal distribution alignment [38, 65, 56] and class con-
ditional distribution alignment [67, 39, 23] are two repre-
sentative methods which minimize various divergence mea-
sures, e.g. H-divergence [3] and maximum mean dis-
crepancy (MMD) [18] to achieve invariance. Over the
years, in contrast to the widely studied covariant shift, label
shift assumption is proposed in some works [6, 2, 37, 71]
from many views, e.g. setting a prior for the label distri-
bution [52], learning marginal label distribution with the
EM algorithm [6] and designing causal/non-causal mod-
els [57, 71, 2, 37]. Recent works [66, 60, 23, 59] exploit
pseudo labels to improve the performance of DA models un-
der class imbalance, but they still rely on learning domain-
invariant representations. An auxiliary target classifier is
proposed in [36] to solve the problems of highly unreliable
pseudo labels and propagated errors, but it does not con-
sider the more practical label shift problem. Motivated by
the simplicity of their framework, we aim to learn an on-
line target-oriented generative classifier to utilize the global
target data structure for improving the quality of pseudo la-
bels under both source domain and class distribution biases.
In contrast to source-free DA [28, 30] that mostly freeze
the source classifier during adaptation to preserve class in-
formation, our method uses a more robust pseudo-labeling
strategy with the in-training source classifier optimized with
data from both source and target domains.

Semi-supervised Learning with Regularization. To
leverage useful information from the unlabeled data, deep
SSL introduces regularization as an auxiliary learning ob-
jective. Pseudo labeling [29], also known as self-training,
serves as a simple and effective SSL baseline by generat-
ing pseudo labels for the unlabeled samples. A line of SSL
works [63, 46, 75] propose different designs of the regular-
ization. Early SSL methods [7] mainly involve Laplacian
regularization, large margin regularization, etc. Recently,
consistency regularization which enforces consistency be-
tween model predictions under different disturbances is be-
coming increasingly popular. Another widely used regular-
ization strategy is minimum entropy [17] that aims to push
model predictions to be sharp and prevent predicted label
distribution from being too balanced. Moreover, regulariza-
tion is also studied in the recent works on DA [13, 24, 9]. It
is a special case of transductive SSL for efficiently improv-
ing domain alignment performance without explicitly de-
signing DA strategies. In contrast, we study soft pseudo la-
bel regularization by learning target data distributions from



the layer-wise feature representations without any modifi-
cation on the architecture nor applying perturbations on the
data or model parameters.

Generative Classifier. It has been investigated in some
works that inducing generative classifiers on the pretrained
deep model for various tasks, e.g. speech recognition
in [20], novelty detection in [31] and learning with noisy la-
bel in [32]. A previous UDA work [42] studies the stochas-
tic classifier to improve the generalization ability of Maxi-
mum Classifier Discrepancy (MCD) [56] for feature align-
ment. Another related work [62] proposes a bi-directional
prototype-oriented conditional transport approach to align
the target features to the source prototypes. In contrast to
these methods that focus on aligning feature distributions in
two domains, we introduce the generative classifier as a reg-
ularization approach to improve the quality of pseudo labels
and enhance the model robustness to the class imbalance.

3. Problem Formulation
Definitions. DA aims to deal with the domain shift be-
tween a set of labeled source data DS = {(xs

i , y
s
i )}

Ns
i=1 and

a set of target data DT = Du
T ∪ Dl

T , where |YS | = C
and ysi ∈ {1, . . . , C} represent the source label space with
C classes, and Du

T and Dl
T denote the unlabeled and la-

beled target data, respectively. UDA and PDA assume
empty target labeled set Dl

T = ∅ and unlabeled target set
Du

T = {xt
i}

Nu
t

i=1. SSDA assumes partial target data are la-

beled, denoted by Dl
T = {xt

i, y
t
i}

N l
t

i=1. Furthermore, UDA
and SSDA assume a common target and source label space,
i.e. YU = YS , and PDA assumes that the target label space
is a subset of the source label space, i.e. YU ⊂ YS . The
objective is to predict the labels {ŷt} of the unlabeled target
samples {xt} ∈ Du

T by utilizing the labeled source dataDS
and limited target labeled data Dl

T if available. Based on
the assumption from [41, 64], there exists a shared feature
space across domains.

Objective. Our goal is to learn a network g(ϕ(x; θf ); θg)
that is able to handle the source data for the DA tasks
with the SSL pseudo labeling approach under class distri-
bution bias. ϕ(x; θf ) : x 7→ f denotes the feature em-
bedding function that maps x to the shared feature space f .
g(f ; θg) : f 7→ Y denotes the classifier that maps features
f to the label space Y .

4. Our Method
Overview. Our GeT is designed to generate debiased
pseudo labels while improving model robustness towards
noisy pseudo labels. As illustrated in Fig. 2, our GeT it-
eratively optimizes the pseudo label generation and trains

the network using Classification Expectation Maximization
(CEM). In the maximization step, we train the network with
the generated pseudo labels, and updates the memory bank
with the updated network. Specifically, we proposes a gen-
erative classifier to generate pseudo-labels ŶM for allevi-
ating data bias from the source domain and class bias in
the target domain. The parameters of our generative clas-
sifier are efficiently updated by constructing two memory
banks: 1) a feature prototypes {µc}Cc=1, and 2) a class prior
distributions {πc}Cc=1. In addition to modeling the target
data structure for improving the quality of pseudo labels,
we further introduce the structure similarity regularization
for improving model robustness towards noises. In the ex-
pectation step, we compute the predictive label distributions
Pf and Pg with GMMs in the feature space N (xt|µf ) and
the output space N (xt|µg). The corresponding auxiliary
target distributions Qf and Qg are defined with the empir-
ical distribution of the samples being assigned to the clus-
ters, and updated to enforce balanced assignments. In the
classification step, we generate the optimal pseudo labels
from the generative classifier and auxiliary distributions by
mixing up data structure-wise knowledge and model-wise
knowledge. Using the pseudo-labels ŶM and target vari-
ables Q{f,g}, we infer pseudo labels ŷ{f,g} for the target
loss L{f,g}

KL and additionally adopt the source loss LS to op-
timize the network.

4.1. Generative Classifier

The presence of data bias from the source domain has
been shown to degrade the quality of pseudo labels for
model adaptation in the target domain [66, 60, 23, 59]. To
alleviate data bias from the source domain, we propose a
target domain-oriented classifier that can fully exploit the
target data structure to generate reliable pseudo labels for
the unlabeled target data. Although the prototype-based
classifier [36] helps to alleviate the data bias from the source
domain, it is sensitive to the class distributions in the tar-
get domain by favoring dominant classes over the minority
classes. Consequently, the class-imbalance problem further
motivates us to extend the prototype-based classifier to a
Gaussian mixture model that can learn the intrinsic target
data distributions for balancing the predictive label distri-
butions.

We model the distribution of the feature embeddings ran-
domly sampled from the target domain f t ∼ DT with a
Gaussian mixture model given by:

p(f t) =
∑
c

πcN (f t | µc,Σc), (1)

where πc = p(yc) is the class prior, i.e. mixing coefficient,
and {µc,Σc} are the class prototype, i.e. mean and covari-
ance of the Gaussian componentN (f t | µc,Σc). We define
our generative classifier as the posterior probability of class
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Figure 2. Overview of GeT. Our GeT consists of a online target generative classifier and a structure similarity regularization to generate
debiased and discriminative pseudo labels for the supervision of the network on various DA tasks.

yc given f t:

p(yc | f t) =
πcp(f

t | µc,Σc)∑
c′ πc′p(f | µc′ ,Σc)

= σ(log πc +
s(f t,µc)

τ
),

(2)

where σ(·) represents the softmax function, s(·, ·) measures
the similarity between feature embeddings and prototypes
(cosine similarity is adopted by default), and τ is a temper-
ature hyperparameter analogous to the class covariance Σc.
s(·,·)
τ gives the log-likelihood log p(f t | µc,Σc).

4.2. Online Target Generative Classifier

We maintain an online target generative classifier using
the features from the target domain, where the parameters,
i.e. the class prior πc and the class prototypes µc over the
entire distribution of the target embeddings are updated ef-
ficiently online using a memory bank. In contrast, many
early works [35, 70] naively compute the feature cluster
centroids based on unsupervised feature clustering, e.g. k-
means, which requires the computationally expensive ex-
traction of all the feature embeddings with the feature ex-
tractor for clustering.

Class priors πc. Given the ith batch of target data
{f t

j,i}B
t

j=1, we first generate the pseudo label ŷt
M,j =

argmaxc p(y | f t
j,i; µ1:C , π1:C) of each data f t

j,i with the
current class prototypes µ1:C and class prior π1:C in the
memory bank. We then use ŷt

M,j in a mixup strategy to
generate more reliable pseudo labels to train the network
g(ϕ(x; θf ); θg) (c.f . Section 4.4 for more details). The class

prior is updated as:

πc ← (1− γπ)πc + γπP̄ ,

where P̄ =
1

Bt
Bt∑
j=1

s(f t
j,i,µ

g
c)

τ
,

(3)

µg
c = θgc\bc is the weights of the linear classifier g(.; θg)

corresponding the class c without the bias terms bc, and γπ
is the memory decay coefficient. We refer to µg

c as the clas-
sifier prototype. The intuition behind this formulation is that
the label prior for each class can be estimated by averaging
the likelihoods over all target features and the memory bank
eases on the computational complexity. Note that we initial-
ize the class prior as a uniform distribution to πc =

1
C .

Class prototypes µc. Different from previous works
which compute the prototypes based on all features accord-
ing to the class labels, we propose to construct the class
prototypes µ1:C on the entire target feature space online us-
ing a memory bank. We derived the update of the learn-
able class prototypes µ1:C from the conditional distribution
p(µc | f t

1:i) based on the entire historical inputs {f t
1:i, yc}

as follows:

log p(µc | f t
1:i) ∝ log p(µc | f t

1:i−1) + log p(f t
i | µc) :=

µc ← (1− γµ) ∗ µc + γµ ∗ µ̄c, where µ̄c =
1

Btc

Bt∑
j=1

1c,jf
t
j,i.

(4)

1c,j = 1[p(yc | f t
j,i) ≥ p(yc′ | f t

j,i),∀c′ ∈ C] selects the
features that give the highest class probability for class c
to update the class prototype µc. γµ is the memory decay
coefficient defined in the same way as γπ .



Remarks: Our generative classifier mitigates source do-
main bias since it is based solely on the target features. Fur-
thermore, our Bayesian formulation of the classifier encour-
ages discriminative features with the class prior πc.

4.3. Structure Similarity Regularization

Although our generative classifier can mitigate source
data bias and encourage discriminative features, it still risks
wrong assignments of features from the scarce classes un-
der class distribution bias. To this end, we introduce a struc-
ture similarity regularization which alternates between op-
timizing the KL-divergence of an auxiliary distribution to
the predictive label distributions and the network parame-
ters to encourage balanced and discriminative assignments
of features into their respective classes.

Classifier label distribution Pg . We estimate the label
distribution Pg := p(y | f t

j ; µ
g
1:C , π1:C) from the features

of the unlabeled target data {f t
j}

Nu
t

j=1, the classifier proto-
types µg

1:C and class prior distribution π1:C . A naive opti-
mization of Pg with the pseudo labels Ŷ t

M produced by our
generative classifier can cause degenerate solutions where
data from scarce classes are assigned wrongly due to class
distribution bias. Motivated by [16], we introduce an auxil-
iary distribution Qg and minimize the following loss:

Lg
KL =

1

Nu
t

KL(Qg∥Pg) +

C∑
c=1

Q̄gc log Q̄gc (5)

over θf , θg and Qg . The first term compute the KL-
divergence between the discrete posteriors Pg and Qg . The
second term plays the role of confidence penalty by encour-
aging entropy maximization of the label distribution in the
target domain. Q̄gc = 1

Nu
t

∑Nu
t

j=1 Qg(yc | f t
j ) is defined

to be the target class proportions. Intuitively, the unlabeled
data are more likely to be assigned to the prototypes cor-
responding to the dominant classes or the prototypes that
are much closer to the target features. The empirical label
distribution Q̄g of the regularized auxiliary distribution is
enforced to have balanced assignments by the second term,
which is equivalent to using the KL-divergence between Q̄g

and a uniform prior distribution. We minimize the loss Lg
KL

using an alternating optimization based on the following
two steps:

a) Pseudo-label generation. We fix the network param-
eters {θf , θg} and Pg to estimate the auxiliary distribution
Qg . The closed-form solution of Qg can be derived by set-
ting the gradient of the optimization objective from Eq. 5 as

zero, i.e.:

Qg(yc | f t
j ) =

Pg(yc | f t
j )/(

∑Nu
t

j=1 Pg(yc | f t
j ))

1
2∑C

c′=1 Pg(yc′ | f t
j )/(

∑Nu
t

j=1 Pg(yc′ | f t
j ))

1
2

.

(6)

b) Network retraining. By fixing Qg , the second term in
Eq. 5 reduces to a constant value and thus giving rise to a
cross entropy loss using Qg as the soft label for network
optimization:

min
θf ,θg

− 1

Nu
t

Nu
t∑

j=1

C∑
c=1

Qg(yc | f t
j ) logPg(yc | f t

j ). (7)

Note that the pseudo-label generation step will be included
in the C-step and the network retraining step will be in-
cluded in the M-step of the final CEM optimization shown
in the next section.

Embedding label distribution Pf . Based on the cluster-
ing assumption in the feature space, we also introduce a
set of learnable embedding prototypes µf

1:C to discover the
target feature discrimination. We compute the label distri-
bution Pf := p(y | f t

j ; µf
1:C , π1:C) and introduce an

auxiliary distribution Qf . We then minimize the following
loss:

Lf
KL =

1

Nu
t

KL(Qf∥Pf ) +

C∑
c=1

Q̄fc log Q̄fc . (8)

over θf , µf
1:C , and Qf . The regularization term is defined

as Q̄fc = 1
Nu

t

∑Nu
t

j=1 Qf (yc | f t
j ). µ

f
1:C are re-initialized at

each epoch using the class prototypes µ1:C from the mem-
ory bank. We apply the same alternating optimization strat-
egy for Lg

KL on Lf
KL, where the auxiliary distribution Qf is

used as the soft label for optimizing the feature embedding
network parameters θf and embedding prototypes µf

1:C .

4.4. Optimization

Given the labeled samples {xs
j , y

s
j} from the source do-

main {XS , YS} and unlabeled samples {xt
j} from the target

domain XT , our GeT model is alternatively optimized by
the CEM steps:

E-Step: Compute the posterior probabilities classifier
Pg := p(y | f t

j ; µg
1:C , π1:C) and embedding Pf :=

p(y | f t
j ; µf

1:C , π1:C) label distributions from the cur-
rent batch of target features {f t

j,i}B
t

j=1, class prior π1:C , and
classifier µg

1:C and embedding µf
1:C prototypes.



C-Step: Fixing the network parameters {θf , θg}, we solve
the pseudo label generation step on the objectives from
Eq. 5 and Eq. 8 to get the auxiliary distributions Q{g,f}.
We then fully utilize data structure knowledge from both
domains to get the final pseudo labels ŶT = {ŷtg, ŷtf} by ap-
plying mixup on the soft labels from Q{f,g} and the pseudo-
labels Ŷ t

M
from our generative classifier, i.e.:

ŷt,c
{g,f},j = (1− γQ)Q{g,f}(yc | f t

j ) + γQŷ
t,c
M,j , (9)

where γQ is the coefficient for the mixup.

M-Step: Fixing ŶT = {ŷtg, ŷtf}, we use the gradient as-
cent to update the network parameters θf and θg , and the
learnable embedding prototypes µf

1:C :

max
θf ,θg,µ

f
1:C

1

Ns

Ns∑
j=1

C∑
c=1

ys,c
j log pθ(y

s,c
j | xs

j)+

1

Nu
t

Nu
t∑

j=1

C∑
c=1

ŷt,c
g,j logPg(yc | f t

j ) + ŷt,c
f,j logPf (yc | f t

j ),

(10)

where pθ(y | xs) = g(ϕ(xs; θf ); θg) denotes the output la-
bel predictions of source data xs from the network. The sec-
ond and third terms are adapted from the network retraining
step mentioned in the previous section.

5. Experiment
5.1. Datasets and Experimental Setting

Datasets. Office-31 [53] includes three domains: Ama-
zon (A), DSLR (D) and Webcam (W), and contains a to-
tal of 4,110 images covering 31 categories. A combination
of six pairs of source-target domain settings are evaluated.
Office-Home [1] includes 4 domains: Artistic (Ar), Clip
Art (CI), Product (Pr) and Real-World (Re) with 65 cate-
gories, where there are ∼15,500 images in total. VisDA-
2017 [49] is a challenging dataset due to the big domain
shift between the synthetic images (152,397 images from
VisDA) and the real images (55,388 images from COCO).
DomainNet-126 is constructed in [55] by selecting 126
classes across 4 domains, i.e. Real (R), Clipart (C), Painting
(P) and Sketch (S), from the largest UDA dataset Domain-
Net [48].

Implementation details. Following [36], we use ResNet-
50 pretrained on the ImageNet as the backbone and uti-
lize a mini-batch SGD with momentum 0.9 and weight
decay 1e−3. The learning rate follows the schedule as
ηi = η0(1 + ω i

Imax
)−α, where ω = 10, α = 0.75, and

η0 is the initial learning rate. We set η0 = 0.001 for the
target-specific bottleneck layers and η0 = 0.01 for the clas-
sifier. We set γµ̄ = 0.9 and perform the sensitivity analysis

on γQ and γP̄ . We set the temperature hyper-parameter τ to
1 empirically. We adopt the imbalanced target class setting
by following [59], where only thirty percent of data from
the first [C/2] classes are kept to simulate class imbalance
in the target domain.

5.2. Comparison with Baselines

Closed-set UDA. Tabs. 1 and 2 study the closed-set UDA
setting using OfficeHome and Office-31 datasets under the
standard setting. We evaluate our method by combining
it with three base models for comparisons: 1) Source-only
model, trained with only labeled source data; 2) CDAN+E,
a UDA model with an additional domain alignment loss
to train the model; 3) MixMatch serving as the SSL base
model. We first study the regularization methods integrated
with the Source-only model. BNM and MCC perform con-
sistently better than the entropy regularization method, i.e.
MinEnt, due to their design on the encouragement of predic-
tion diversity generally ignored by entropy minimization.
ATDOC that uses the target-oriented classifier significantly
outperforms pseudo labeling (PL) and BNM, which verifies
the importance of regularizing target predictions. As shown
in Tabs. 1 and 2, our GeT that uses the target structure sim-
ilarity regularization consistently achieves state-of-the-art
performance. When combined with CDAN+E, all baselines
show better results as the model is jointly optimized with
an additional domain alignment loss. Our GeT is able to
further improve the performance and obtain the best aver-
age accuracy compared with other regularization methods.
Under the SSL framework with MixMatch adopted as the
base model, our GeT also boosts the performance when it
is adopted as a pseudo label generation module. It is fur-
ther shown in Tab. 1 and Tab. 2 that GeT can achieve com-
petitive results as some state-of-the-art UDA methods, e.g.
SCDA and DALN, with no explicit feature alignment.

Semi-supervised DA. We follow the experiment setting
in [55] to evaluate SSDA on the DomainNet-126 dataset. As
shown in Tab. 3: 1) 1-shot represents one labeled instance is
available for each class in the target domain, and 2) 3-shot
means we have access to three target labels per class. From
the reported results, pseudo-labeling and BNM achieve the
same second best performance in the 3-shot setting while
BNM performs better in the 1-shot setting. The overall
average accuracy of ATDOC-NC indicates that the perfor-
mance of nearest centroid classifier relies heavily on the as-
sumption of balanced target clusters to assign pseudo labels.
We also include the prior state-of-the-art SSDA method,
e.g. S3D, for comparison, which outperforms the SSL reg-
ularization approaches. By contrast, our GeT achieves the
highest average accuracy among all the compared methods,
which shows that our design on the target data structure
learning indeed improves data discrimination.



Table 1. Classification accuracy (%) on Office-Home for UDA (ResNet-50).
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean
ResNet-50 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4
MinEnt [17] 51.0 71.9 77.1 61.2 69.1 70.1 59.3 48.7 77.0 70.4 53.0 81.0 65.8
BNM [13] 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1
MCC [24] 56.3 77.3 80.3 67.0 77.1 77.0 66.2 55.1 81.2 73.5 57.4 84.1 71.0
PL 54.1 74.1 78.4 63.3 72.8 74.0 61.7 51.0 78.9 71.9 56.6 81.9 68.2
ATDOC-NC [36] 54.4 77.6 80.8 66.5 75.6 75.8 65.9 51.9 81.1 72.7 57.0 83.5 70.2
GeT 59.4 79.6 82.9 71.4 79.8 79.8 69.7 56.2 83.5 73.9 60.1 86.0 73.5
CDAN+E [40] 54.6 74.1 78.1 63.0 72.2 74.1 61.6 52.3 79.1 72.3 57.3 82.8 68.5
+ BNM [13] 58.1 77.2 81.1 67.5 75.3 77.2 65.5 56.8 82.6 74.1 59.9 84.6 71.7
+ MCC [24] 58.9 77.6 80.7 67.0 75.1 77.1 65.8 56.8 82.2 73.9 59.8 84.5 71.6
+ PL 57.3 76.6 79.2 66.6 74.0 76.6 66.1 53.6 81.0 74.3 58.9 84.2 70.7
+ ATDOC-NC [36] 55.9 76.3 80.3 63.8 75.7 76.4 63.9 53.7 81.7 71.6 57.7 83.3 70.0
+ GeT 60.5 78.8 82.6 69.1 79.7 78.8 69.5 59.3 84.6 75.2 62.3 88.0 74.0
SAFN [68] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
SHOT [35] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
SCDA [34] 57.5 76.9 80.3 65.7 74.9 74.7 65.5 53.6 79.8 74.5 59.6 83.7 70.5
DALN [8] 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.3 71.8
FixBi [47] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

Table 2. Accuracy (%) on Office-31 for UDA (ResNet-50). [†:
average accuracy except D ↔ W.]

Method A→D A→W D→A D→W W→A W→D Avg. Avg.†

ResNet-50 78.3 70.4 57.3 93.4 61.5 98.1 76.5 66.9
MinEnt [17] 90.7 89.4 67.1 97.5 65.0 100.0 85.0 78.1
MCC [24] 92.1 94.0 74.9 98.5 75.3 100.0 89.1 84.1
BNM [13] 92.2 94.0 74.9 98.5 75.3 100.0 89.2 84.1
PL 88.7 89.1 65.8 98.1 66.6 99.6 84.7 77.6
ATDOC-NC [36] 95.2 91.6 74.6 99.1 74.7 100.0 89.2 84.0
ATDOC-NA [36] 94.4 94.3 75.6 98.9 75.2 99.6 89.7 84.9
GeT 95.4 95.4 76.6 99.1 77.0 100. 90.6 86.0
CDAN+E [40] 94.5 94.2 72.8 98.6 72.2 100.0 88.7 83.4
+ MCC [24] 94.1 94.7 75.4 99.0 75.7 100.0 89.8 85.0
+ BNM [13] 94.9 94.3 75.8 99.0 75.9 100.0 90.0 85.2
+ PL 91.5 93.1 72.5 97.8 72.7 99.8 87.9 82.4
+ ATDOC-NC [36] 96.3 93.6 74.3 99.1 75.4 100.0 89.8. 84.9
+ ATDOC-NA [36] 95.4 94.6 77.5 98.1 77.0 99.7 90.4 86.1
+ GeT 96.7 95.8 78.6 99.1 77.8 100. 91.2 87.2
MixMatch [4] 88.5 84.6 63.3 96.1 65.0 99.6 82.9 75.4
w/ PL 89.0 86.0 65.8 96.2 65.6 99.6 83.7 76.6
w/ ATDOC-NC [36] 91.3 86.4 66.0 97.4 64.4 99.4 84.1 77.0
w/ ATDOC-NA [36] 92.1 91.0 70.9 98.6 76.2 99.6 88.1 82.6
w/ GeT 93.1 92.7 71.8 98.8 77.0 99.6 88.65 83.3
SHOT [35] 94.0 90.1 74.7 98.4 74.3 99.9 88.6 83.3
SCDA [34] 95.2 94.2 75.7 98.7 76.2 99.8 90.0 85.3
DALN [8] 95.4 95.2 76.4 99.1 76.5 100. 90.4 85.9

Partial-set UDA. We follow the partial-set UDA setting
in [36] and evaluate performance on the OfficeHome dataset
in Tab. 4 by selecting the first 25 classes as the label space
for the unlabeled target data. PDA suffers from both the
data bias and the label distribution shift, i.e., two domains
have mismatched label space. ATDOC shows relative bet-
ter results than other SSL regularization baselines as well
as the prior state-of-the-art PDA methods, i.e. RTNetadv .
MCC and BNM show comparable performance as MinEnT
in the standard setting, but MinEnT achieves better results
due to its superiority from the prediction diversity. Simi-
larly, the structural similarity regularization in our GeT can
penalize the over-confident predictions and shows effective-
ness in improving performance.

Imbalanced Target Distribution. We further evaluate
our method for the closed-set UDA and PDA under the im-

balanced target label distribution scenario. As shown in
Tab. 5, when the target domain is added with class distribu-
tion bias, the performance of all methods is inferior to their
corresponding standard models suffering only from the data
bias, e.g. the performance of ATDOC deteriorates to be even
more inferior than BNM. Our Get achieves the best results
in all DA tasks and shows superior resilience to severe label
distribution shift.

5.3. Model Analysis

Ablation study. We conduct ablation study on Office-31
and VisDA-2017 for UDA in Tab. 6 to examine the effect of
each component on our GeT. The base model is ATDOC-
NC where a target-oriented prototype classifier is used to
generate pseudo labels. 1) Online update strategy for the
probabilistic model (i.e. w/o Lf,g

KL ). We present results
by directly using the predictions ŷt

M
from the online up-

dated generative classifier as pseudo labels. Compared to
the pure target feature classifier (NC), our GeT improves
+1.1% average accuracy on VisDA-2017 by modeling fea-
ture distributions with the generative classifier. It verifies
the effectiveness of our online update strategy for the prob-
abilistic model. 2) Effect of feature structure regularization.
We examine the effect of each loss by removing each fea-
ture discrimination objective formulated by KL-divergence.
We first evaluate Lg

KL in the label space (i.e. w/o Lf
KL). It

is shown the auxiliary distribution variable Qg,f can bring
better performance than the oracle hard supervisions. The
ensemble of feature-level regularization further improves
+1.7% on VisDA-2017, thus showing the effectiveness of
our learnable embedding prototypes for improving target
feature discrimination. 3) Mixed soft labels. We further
analyze how pseudo labels generated from the maintained
generative classifier improve upon the auxiliary label Qg,f

with mixed supervisions (i.e. w/o ŶT ). We can see there
is a performance drop (VisDA-2017: 83.4% → 82.0%) by



Table 3. Classification accuracy (%) on DomainNet-126 for SSDA (ResNet-34).

Method C→S P→C P→R R→C R→P R→S S→P Avg.
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

ResNet-34 54.8 57.9 59.2 63.0 73.7 75.6 61.2 63.9 64.5 66.3 52.0 56.0 60.4 62.2 60.8 63.6
MinEnt [17] 56.3 61.5 67.7 71.2 76.0 78.1 66.1 71.6 68.9 70.4 60.0 63.5 62.9 66.0 65.4 68.9
BNM [13] 58.4 62.6 69.4 72.7 77.0 79.5 69.8 73.7 69.8 71.2 61.4 65.1 64.1 67.6 67.1 70.3
MCC [24] 56.8 60.5 62.8 66.5 75.3 76.5 65.5 67.2 66.9 68.1 57.6 59.8 63.4 65.0 64.0 66.2
PL 62.5 64.5 67.6 1 70.7 78.3 79.3 70.9 72.9 69.2 70.7 62.0 64.8 67.0 68.6 68.2 70.2
ATDOC-NC [36] 58.1 62.2 65.8 70.2 76.9 78.7 69.2 72.3 69.8 70.6 60.4 65.0 65.5 68.1 66.5 69.6
GeT 66.7 67.8 73.9 75.8 82.0 82.8 76.1 77.6 72.5 73.9 66.8 67.1 69.8 73.6 72.2 73.9
MME [55] 56.3 61.8 69.0 71.7 76.1 78.5 70.0 72.2 67.7 69.7 61.0 61.9 64.8 66.8 66.4 68.9
APE [26] 56.7 63.1 72.9 76.7 76.6 79.4 70.4 76.6 70.8 72.1 63.0 67.8 64.5 66.1 67.6 71.7
S3D [69] 60.8 64.4 73.4 75.1 79.5 80.3 73.3 75.9 68.9 72.1 65.1 66.7 68.2 70.0 69.9 72.1

Table 4. Classification accuracy (%) on Office-Home for PDA (ResNet-50).
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean
ResNet-50 43.5 67.8 78.9 57.5 56.2 62.2 58.1 40.7 74.9 68.1 46.1 76.3 60.9
MinEnt [17] 45.7 73.3 81.6 64.6 66.2 73.0 66.0 52.4 78.7 74.8 56.7 80.8 67.8
BNM [13] 54.6 77.2 81.1 64.9 67.9 72.8 62.6 55.7 79.4 70.5 54.7 77.6 68.2
MCC [24] 54.1 75.3 79.5 63.9 66.3 71.8 63.3 55.1 5 78.0 70.4 55.7 76.7 67.5
PL 51.9 70.7 77.5 61.7 62.4 67.8 62.9 54.1 73.8 70.4 56.7 75.0 65.4
ATDOC-NC [36] 59.5 80.3 83.8 71.8 71.6 79.7 70.6 59.4 82.2 78.4 61.1 81.5 73.3
ATDOC-NA [36] 60.1 76.9 84.5 72.8 71.2 80.9 73.9 61.8 83.8 77.3 60.4 80.4 73.7
GeT 61.4 81.2 85.9 74.0 74.1 82.3 75.8 63.9 85.3 79.6 63.7 84.6 75.8
SAFN [68] 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8
RTNetadv [12] 63.2 80.1 80.7 66.7 69.3 77.2 71.6 53.9 84.6 77.4 57.9 85.5 72.3

Figure 3. a) Comparison of convergence for the Ar → Pr task on Office-Home. Feature visualization with b) Source-only and c) GeT for
the task A → W on Office-31. Note that different classes are denoted by different colors.

Table 5. Classification accuracy (%) on Office-Home for UDA and
PDA under the imbalanced target distribution (ResNet-50).

Setting UDA PDA
Method A→ C C→P P→R R→A Avg. A→ C C→P P→R R→A Avg.
ResNet-50 44.3 62.4 72.6 64.3 59.5 49.1 59.9 76.1 70.2 63.8
BNM [13] 55.9 70.9 78.7 70.4 67.5 53.8 63.7 78.9 70.7 67.6
MCC [24] 48.5 66.8 75.1 67.6 63.1 52.4 61.1 75.7 70.1 65.6
PL 53.8 68.5 76.5 69.2 65.4 49.9 61.5 72.8 68.0 62.9
ATDOC-NC [36] 52.5 72.5 78.6 69.7 67.1 55.6 71.8 81.6 73.9 70.9
GeT 56.1 74.8 81.9 71.6 70.2 57.8 73.8 85.9 77.2 75.3

Table 6. Classification accuracy (%) of GeT on Office-31 and
VisDA-2017 under different variants. (ResNet-50)

NC GeT w/o L{f,g}
KL GeT w/o Lf

KL GeT w/o ŶT GeT
Office-31 84.0 85.1 84.5 85.6 86.0
VisDA-2017 80.3 81.4 80.6 82.0 83.4

removing the guidance from the online generative classifier.
The mixed soft labels performs better than each separate su-
pervision from ŶM and Qg,f .

Convergence comparison. We study the convergence of
GeT by plotting test accuracy versus iteration number for
Ar → Pr task on Office-Home in Fig. 3. Comparing GeT
with other baselines, GeT converges more quickly and
the performance remains stable thereafter. This observa-
tion demonstrates that our GeT can provide more reliable
pseudo labels in the early stage and performs better regular-
ization on target data for discrimination.

Visualization. We visualize the target features learned by
Source Only and GeT for the task A→ W on Office-31 in
Fig. 3 with UMAP [45] plot. It is obvious that our GeT pro-
vides better prototypes for target discrimination with clear
boundaries among classes.

Sensitivity Analysis. We also evaluate the sensitivity of
our model to two hyper-parameters γπ and γQ, i.e. the



Figure 4. Average accuracy of our GeT with a) varying γπ when
γQ = 0.2, and b) varying γQ when γπ = 0 on A→W in imbal-
anced Office-31.

memory decay for the class prior and the mixup coefficient
for the soft labels in Fig. 4. Particularly, we choose γπ from
[0,1] by setting γQ to 0.2. we then vary the value of γQ over
the range {0,0.2,0.5,0.8,1} with γπ = 0. When γQ is set to
0 or 1, it is equivalent to the single supervision from the
model output or the target-oriented classifier. The mixed
pseudo labels produce better results as they combine the
source domain knowledge learned from the model and the
target domain knowledge. It can be observed that the accu-
racy of our model is not sensitive to both hyper-parameters
in a relative wide range.

6. Conclusion
In this paper, we propose a new target structure regular-

ization approach for the DA tasks to deal with the source
data bias and class distribution bias problems. We provide a
new perspective of enhancing target data discrimination by
formulating a learnable generative classifier, where the pa-
rameters are updated efficiently online in mini-batches. To
further uncover the debiased target feature discrimination,
we introduce the structure similarity regularization on the
model predictions and the embeddings by an auxiliary dis-
tribution and a set of learnable embedding prototypes. Ex-
tensive experiments demonstrate that our GeT outperforms
other regularization methods, and some DA models with ex-
plicit feature alignment on several DA tasks with large class
distribution bias.
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